This paper develops \emph{iterative Covariance Regulation} (iCR), a novel method for active exploration and mapping for a mobile robot equipped with on-board sensors. The problem is posed as optimal control over the $SE(3)$ pose kinematics of the robot to minimize the differential entropy of the map conditioned the potential sensor observations. We introduce a differentiable field of view formulation, and derive iCR via the gradient descent method to iteratively update an open-loop control sequence in continuous space so that the covariance of the map estimate is minimized. We demonstrate autonomous exploration and uncertainty reduction in simulated occupancy grid environments.
翻译:本文开发了 \ emph{ emptal Covention Project} (iCR) (iCR),这是对配备机载传感器的移动机器人进行积极探索和绘图的一种新颖方法,问题在于对机器人的美元(3)构成运动动力学的最佳控制,以最大限度地减少地图上对潜在传感器观测条件的差分微微粒。我们引入了一个不同的视觉配方领域,并通过梯度下沉法从iCR 中提取,以迭接地更新连续空间的开放环控序列,从而将地图估计值最小化。我们展示了模拟占用电网环境中的自主探索和不确定性减少。