Digital aquaculture leverages advanced technologies and data-driven methods, providing substantial benefits over traditional aquaculture practices. This paper presents a comprehensive review of three interconnected digital aquaculture tasks, namely, fish tracking, counting, and behaviour analysis, using a novel and unified approach. Unlike previous reviews which focused on single modalities or individual tasks, we analyse vision-based (i.e. image- and video-based), acoustic-based, and biosensor-based methods across all three tasks. We examine their advantages, limitations, and applications, highlighting recent advancements and identifying critical cross-cutting research gaps. The review also includes emerging ideas such as applying multi-task learning and large language models to address various aspects of fish monitoring, an approach not previously explored in aquaculture literature. We identify the major obstacles hindering research progress in this field, including the scarcity of comprehensive fish datasets and the lack of unified evaluation standards. To overcome the current limitations, we explore the potential of using emerging technologies such as multimodal data fusion and deep learning to improve the accuracy, robustness, and efficiency of integrated fish monitoring systems. In addition, we provide a summary of existing datasets available for fish tracking, counting, and behaviour analysis. This holistic perspective offers a roadmap for future research, emphasizing the need for comprehensive datasets and evaluation standards to facilitate meaningful comparisons between technologies and to promote their practical implementations in real-world settings.
翻译:暂无翻译