About two dozens of exactly solvable Markov chains on one-dimensional finite and semi-infinite integer lattices are constructed in terms of convolutions of orthogonality measures of the Krawtchouk, Hahn, Meixner, Charlier, $q$-Hahn, $q$-Meixner and little $q$-Jacobi polynomials. By construction, the stationary probability distributions, the complete sets of eigenvalues and eigenvectors are provided by the polynomials and the orthogonality measures. An interesting property possessed by these stationary probability distributions, called `convolutional self-similarity,' is demonstrated.
翻译:以Krawtchouk、Hahn、Meixner、Charlier、$q$-Hahn、$q$-Meixner和小$q$-Jacobi多元壁炉的正反位度度度测量法的变异性计算,在一维的有限和半无限的整数层上建造了大约20多条完全可溶解的Markov链条。通过建造,固定概率分布、全套egen值和精精子的组合由多元和正数测量测量法提供,展示了这些恒定概率分布所拥有的一个有趣的属性,称为“革命自我相似性 ” 。