The generalized coloring numbers of Kierstead and Yang [7] offer an algorithmically useful characterization of graph classes with bounded expansion. In this work, we consider the hardness and approximability of these parameters. First, we show that it is NP-hard to compute the weak 2-coloring number (answering an open question of Grohe et al. [5]). We then complete the picture by proving that the $r$-coloring number is also NP-hard to compute for all $r \geq 2$. Finally, we give an approximation algorithm for the $r$-coloring number which improves both the runtime and approximation factor of the existing approach of Dvo\v{r}\'ak [3]. Our algorithm greedily orders vertices with small enough $i$-reach for every $i \leq r$ and achieves an $O(C_{r-1} k^{r-1})$-approximation, where $C_j$ is the $j$th Catalan number.
翻译:Kierstead 和 Yang 的通用彩色数字[7] 提供了具有约束性扩展的图表类别具有逻辑价值的描述。 在这项工作中,我们考虑了这些参数的难度和近似性。 首先,我们表明,很难计算微弱的2色数字(回答Grohe et al. [5] 的未决问题) 。然后,我们通过证明美元彩色数字也很难计算所有2美元。最后,我们给出了美元彩色数字的近似算法,这改善了Dvo\v{r ⁇ 'ak [3] 的现行方法的运行时间和近似系数。我们的算法贪婪命令,每1美元以小的美元达到1美元,达到1美元(czr-1} k ⁇ r-1}-approximation。 最后,我们给出了美元数字的近似算法, 美元是美元卡塔兰数字。