In this paper, we develop the elements of the theory of algorithmic randomness in continuous-time Markov chains (CTMCs). Our main contribution is a rigorous, useful notion of what it means for an $\textit{ individual trajectory }$ of a CTMC to be ${ \textit random }$. CTMCs have discrete state spaces and operate in continuous time. This, together with the fact that trajectories may or may not halt, presents challenges not encountered in more conventional developments of algorithmic randomness. Although we formulate algorithmic randomness in the general context of CTMCs, we are primarily interested in the $\textit{ computational }$ power of stochastic chemical reaction networks, which are special cases of CTMCs. This leads us to embrace situations in which the long-term behavior of a network depends essentially on its initial state and hence to eschew assumptions that are frequently made in Markov chain theory to avoid such dependencies. After defining the randomness of trajectories in terms of a new kind of martingale (algorithmic betting strategy), we prove equivalent characterizations in terms of constructive measure theory and Kolmogorov complexity. As a preliminary application, we prove that, in any stochastic chemical reaction network, $\textit{ every }$ random trajectory with bounded molecular counts has the $\textit{ non-Zeno property }$ that infinitely many reactions do not occur in any finite interval of time.


翻译:在本文中, 我们开发了连续时间 Markov 链( CTMCs) 的算法随机性理论要素 。 我们的主要贡献是一个严格、 有用的概念, 即对于 $\ textit{ 个人轨迹 美元来说, CTMC 的值是${\ textit 随机 $。 CTMC 有离散的状态空间, 并连续运行。 这加上轨迹可能停止, 也带来了在更传统的算法随机性发展中没有遇到的挑战 。 尽管我们在 CTMCs 的总体背景下制定了算法随机性, 我们主要感兴趣的是 $\ textit{ 计算} 个人轨迹 美元 的化学反应网络的力量, 这是 CTMC 的特殊案例。 这导致我们面对的情况是, 一个网络的长期行为基本上取决于其初始状态, 从而可以避免在 Markov 链理论中经常作出的假设, 以避免这种依赖性。 在定义新的 marting $ 值( legaltial) 的算性轨迹的随机性反应的随机性( ), 和 ASorticalticalticalticalal- trevationaltical) 战略中, 我们可以证明任何的 exticalticalalaltiew extitudealalalalalalal- acational- cal- cal- cal- acaltiewal- cal- caltiewal- strational- extractional- exaltial- extradestrationaltitionaltraction 。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员