This paper studies queueing problems with an endogenous number of machines with and without an initial queue, the novelty being that coalitions not only choose how to queue, but also on how many machines. For a given problem, agents can (de)activate as many machines as they want, at a cost. After minimizing the total cost (processing costs and machine costs), we use a game theoretical approach to share to proceeds of this cooperation, and study the existence of stable allocations. First, we study queueing problems with an endogenous number of machines, and examine how to share the total cost. We provide an upper bound and a lower bound on the cost of a machine to guarantee the non-emptiness of the core (the set of stable allocations). Next, we study requeueing problems with an endogenous number of machines, where there is an existing queue. We examine how to share the cost savings compared to the initial situation, when optimally requeueing/changing the number of machines. Although, in general, stable allocation may not exist, we guarantee the existence of stable allocations when all machines are considered public goods, and we start with an initial schedule that might not have the optimal number of machines, but in which agents with large waiting costs are processed first.
翻译:本文研究先排队和不排队的机器数量的问题,新颖之处在于联盟不仅选择如何排队,而且还选择了多少机器。 对于一个特定的问题,代理商可以(以成本)以自己想要的多少机器停止活动。在将总成本(处理成本和机器成本)降到最低之后,我们使用游戏理论方法来分享这种合作的收益,并研究是否存在稳定的分配。首先,我们研究与本地数机器的排队问题,并研究如何分担总成本。我们不仅选择如何排队,而且选择了多少机器的费用。我们提供了一台机器的上限和下限,以保证核心的不完全性(稳定分配的一套 ) 。接下来,我们研究如何在现有排队的情况下用本地数的机器重新排队的问题。我们研究如何将节省的成本与初始情况相提,当机器数量的最佳重新排队/改变时,我们研究如何在最理想的情况下,当所有机器被视为公共货物时,稳定的分配可能不存在,我们保证存在稳定的分配。我们首先从初步的日程开始研究可能没有最理想的机器的等待数量,但其中的代理是大型的机器。