Predicting future trajectories of traffic agents in highly interactive environments is an essential and challenging problem for the safe operation of autonomous driving systems. On the basis of the fact that self-driving vehicles are equipped with various types of sensors (e.g., LiDAR scanner, RGB camera, radar, etc.), we propose a Cross-Modal Embedding framework that aims to benefit from the use of multiple input modalities. At training time, our model learns to embed a set of complementary features in a shared latent space by jointly optimizing the objective functions across different types of input data. At test time, a single input modality (e.g., LiDAR data) is required to generate predictions from the input perspective (i.e., in the LiDAR space), while taking advantages from the model trained with multiple sensor modalities. An extensive evaluation is conducted to show the efficacy of the proposed framework using two benchmark driving datasets.


翻译:预测在高度互动环境中的交通代理器未来轨迹是自主驾驶系统安全运行的一个至关重要和具有挑战性的问题,基于自驾驶车辆配备了各种传感器(如利达雷达扫描仪、RGB照相机、雷达等)这一事实,我们提议了一个跨模式嵌入框架,目的是从多种输入模式的使用中受益。在培训时间,我们的模型学会将一套互补特征嵌入共享的潜在空间,共同优化不同类型输入数据的目标功能。在测试时间,需要一种单一输入模式(如利达雷达数据),以便从输入角度(即利达雷达空间)作出预测,同时利用经过多种传感器模式培训的模型,利用两个基准驱动数据集进行广泛评估,以显示拟议框架的有效性。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员