Urban environments offer a challenging scenario for autonomous driving. Globally localizing information, such as a GPS signal, can be unreliable due to signal shadowing and multipath errors. Detailed a priori maps of the environment with sufficient information for autonomous navigation typically require driving the area multiple times to collect large amounts of data, substantial post-processing on that data to obtain the map, and then maintaining updates on the map as the environment changes. This dissertation addresses the issue of autonomous driving in an urban environment by investigating algorithms and an architecture to enable fully functional autonomous driving with limited information.
翻译:城市环境为自主驾驶提供了一种具有挑战性的情景。全球定位信息,如全球定位系统信号,由于信号影子和多路径错误,可能不可靠。详细的环境先验地图,如果有足够的自主导航信息,通常需要多次驱动该地区,以收集大量数据,大量处理后的数据以获取地图,然后随着环境的变化在地图上更新。该论文通过调查算法和结构,在城市环境中通过调查算法和结构,使信息有限的完全功能自主驾驶成为可能,从而解决城市环境中自主驾驶的问题。