Document denoising and binarization are fundamental problems in the document processing space, but current datasets are often too small and lack sufficient complexity to effectively train and benchmark modern data-driven machine learning models. To fill this gap, we introduce ShabbyPages, a new document image dataset designed for training and benchmarking document denoisers and binarizers. ShabbyPages contains over 6,000 clean "born digital" images with synthetically-noised counterparts ("shabby pages") that were augmented using the Augraphy document augmentation tool to appear as if they have been printed and faxed, photocopied, or otherwise altered through physical processes. In this paper, we discuss the creation process of ShabbyPages and demonstrate the utility of ShabbyPages by training convolutional denoisers which remove real noise features with a high degree of human-perceptible fidelity, establishing baseline performance for a new ShabbyPages benchmark.
翻译:文件拆卸和二进制是文件处理空间的根本问题,但目前的数据集往往太小,不够复杂,无法有效地培训和基准现代数据驱动的机器学习模式。为了填补这一空白,我们引入了ShabbyPages,这是一套新的文件图像数据集,用于培训和基准文件缩放器和二进制器。ShabbyPages包含6,000多张清洁的“出生数字”图像,配有合成的“出生数字”图像(“隐藏页 ” ),这些图像使用Auphas文档增强工具得到扩充,以显示它们是否已经印刷和传真、复印或以其他方式通过物理过程加以改变。我们在本文件中讨论ShabbyPages的创建过程,并通过培训具有高度人性可视性、消除真实噪音特征、为新的ShabbyPages基准建立基线性性性能。</s>