Embodied agents, trained to explore and navigate indoor photorealistic environments, have achieved impressive results on standard datasets and benchmarks. So far, experiments and evaluations have involved domestic and working scenes like offices, flats, and houses. In this paper, we build and release a new 3D space with unique characteristics: the one of a complete art museum. We name this environment ArtGallery3D (AG3D). Compared with existing 3D scenes, the collected space is ampler, richer in visual features, and provides very sparse occupancy information. This feature is challenging for occupancy-based agents which are usually trained in crowded domestic environments with plenty of occupancy information. Additionally, we annotate the coordinates of the main points of interest inside the museum, such as paintings, statues, and other items. Thanks to this manual process, we deliver a new benchmark for PointGoal navigation inside this new space. Trajectories in this dataset are far more complex and lengthy than existing ground-truth paths for navigation in Gibson and Matterport3D. We carry on extensive experimental evaluation using our new space for evaluation and prove that existing methods hardly adapt to this scenario. As such, we believe that the availability of this 3D model will foster future research and help improve existing solutions.
翻译:在标准数据集和基准基准方面,经过培训的室内摄影现实环境中的渗透剂已经取得了令人印象深刻的成果。到目前为止,实验和评价已经涉及办公室、公寓和房屋等家庭和工作场景。在本文中,我们建造和释放了一个具有独特特点的新3D空间:一个完整的艺术博物馆。我们命名了这个环境ArtGallery3D(AG3D)。与现有的3D场景相比,所收集的空间比现有的3D场景更丰富,更丰富,视觉特征更丰富,并且提供了非常稀少的占用信息。对于通常在拥挤的家庭环境中受过大量占用信息培训的基于占用的代理人来说,这一特征具有挑战性。此外,我们说明博物馆内主要利益点的坐标,例如绘画、雕塑和其他物品。由于这个手动过程,我们为这个新空间内的点目标导航提供了新的基准。这个数据集的轨迹比吉布森和Mempleport3D现有的地面真相路径要复杂得多和长得多。我们利用我们的新空间进行广泛的实验性评估,并证明现有的方法将难以适应这一前景。