Predicting the future motion of road agents is a critical task in an autonomous driving pipeline. In this work, we address the problem of generating a set of scene-level, or joint, future trajectory predictions in multi-agent driving scenarios. To this end, we propose FJMP, a Factorized Joint Motion Prediction framework for multi-agent interactive driving scenarios. FJMP models the future scene interaction dynamics as a sparse directed interaction graph, where edges denote explicit interactions between agents. We then prune the graph into a directed acyclic graph (DAG) and decompose the joint prediction task into a sequence of marginal and conditional predictions according to the partial ordering of the DAG, where joint future trajectories are decoded using a directed acyclic graph neural network (DAGNN). We conduct experiments on the INTERACTION and Argoverse 2 datasets and demonstrate that FJMP produces more accurate and scene-consistent joint trajectory predictions than non-factorized approaches, especially on the most interactive and kinematically interesting agents. FJMP ranks 1st on the multi-agent test leaderboard of the INTERACTION dataset.
翻译:预测道路物剂的未来运动是自主驾驶管道中的一个关键任务。 在这项工作中,我们解决了在多试剂驾驶情景中产生一套场景水平或联合未来轨迹预测的问题。为此,我们提议FJMP,一个多试剂交互式驾驶情景的集成联合动态预测框架。FJMP将未来场景互动动态模型作为稀疏的定向互动图,其中边缘表示各种物剂之间的明显互动。我们然后将图绘制成一个定向单流图(DAG),并按照DAG的部分订单将联合预测任务分解成一系列边际和有条件的预测。DAG的部分订单中,对未来联合轨迹进行编码,使用定向环形图神经网络(DAGNN)进行解码。我们在InterACtion和Argovers 2数据集上进行实验,并表明FJMP产生比非量化方法更准确和符合场景调的联合轨迹的轨迹预测,特别是在最互动和最有运动兴趣的物剂上。FJMP在INACT数据库多试板头板上排名第1位。