Proximal Markov Chain Monte Carlo is a novel construct that lies at the intersection of Bayesian computation and convex optimization, which helped popularize the use of nondifferentiable priors in Bayesian statistics. Existing formulations of proximal MCMC, however, require hyperparameters and regularization parameters to be prespecified. In this work, we extend the paradigm of proximal MCMC through introducing a novel new class of nondifferentiable priors called epigraph priors. As a proof of concept, we place trend filtering, which was originally a nonparametric regression problem, in a parametric setting to provide a posterior median fit along with credible intervals as measures of uncertainty. The key idea is to replace the nonsmooth term in the posterior density with its Moreau-Yosida envelope, which enables the application of the gradient-based MCMC sampler Hamiltonian Monte Carlo. The proposed method identifies the appropriate amount of smoothing in a data-driven way, thereby automating regularization parameter selection. Compared with conventional proximal MCMC methods, our method is mostly tuning free, achieving simultaneous calibration of the mean, scale and regularization parameters in a fully Bayesian framework. Supplementary materials for this article are available online.


翻译:Proximal Markov Clack Monte Carlo是位于巴伊西亚计算和 convex优化交汇处的一个新建筑,它有助于在巴伊西亚统计中推广使用不可区别的前科。不过,现有的近似MCMC的配方要求预先说明超参数和正规化参数。在这项工作中,我们通过引入新型的不可区分的前科新类别,即传记前科,扩展了准超光谱MCMC的范范范范。作为概念的证明,我们将趋势过滤(最初是一个非参数回归问题)放在一个参数设置中,以提供一个与可靠间隔相匹配的后部中位,作为不确定性的衡量尺度。关键的想法是用其Moreau-Yosida封套件取代后端密度中的非单词。这使得基于梯度的MC采样员汉密尔密尔顿·蒙特卡洛得以应用。拟议的方法确定了以数据驱动方式实现平稳的适当数量,从而将规范化参数选择自动化。与传统的准光谱MC方法相比,我们的方法主要是对目前可使用的线级标准进行全面校准。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员