Graph neural networks (GNNs) have shown the power in representation learning over graph-structured user-item interaction data for collaborative filtering (CF) task. However, with their inherently recursive message propagation among neighboring nodes, existing GNN-based CF models may generate indistinguishable and inaccurate user (item) representations due to the over-smoothing and noise effect with low-pass Laplacian smoothing operators. In addition, the recursive information propagation with the stacked aggregators in the entire graph structures may result in poor scalability in practical applications. Motivated by these limitations, we propose a simple and effective collaborative filtering model (SimRec) that marries the power of knowledge distillation and contrastive learning. In SimRec, adaptive transferring knowledge is enabled between the teacher GNN model and a lightweight student network, to not only preserve the global collaborative signals, but also address the over-smoothing issue with representation recalibration. Empirical results on public datasets show that SimRec archives better efficiency while maintaining superior recommendation performance compared with various strong baselines. Our implementations are publicly available at: https://github.com/HKUDS/SimRec.
翻译:图像神经网络(GNNs)已经展示了通过图形结构用户-项目互动数据进行代表式学习以进行协作过滤任务(CF)的动力。然而,由于以GNN为基础的现有CF模型在相邻节点之间传播其内在的循环信息,因此可能会产生无法区分和不准确的用户(项目)表达方式,因为与低通的Laplacian平滑操作器存在过度移动和噪音效应。此外,与整个图形结构中堆叠的聚合器一起的循环信息传播可能会导致实际应用中的可缩放性差。受这些限制的驱动,我们提出了一个简单而有效的合作过滤模式(SimRec),将知识蒸馏和对比学习的能量合并起来。在SimRec中,使适应性转移知识在教师GNNM模型和轻量的学生网络之间得以实现,不仅保存全球协作信号,而且还解决过度移动的问题,并重新校正。关于公共数据设置的Empical结果显示,SimRec档案在保持高端建议性性功能的同时,同时保持各种强有力的基线。 我们的实施工作是公开的。</s>