In this paper, we present a Newton-like method based on model reduction techniques, which can be used in implicit numerical methods for approximating the solution to ordinary differential equations. In each iteration, the Newton-like method solves a reduced order linear system in order to compute the Newton step. This reduced system is derived using a projection matrix, obtained using proper orthogonal decomposition, which is updated in each time step of the numerical method. We demonstrate that the method can be used together with Euler's implicit method to simulate CO$_2$ injection into an oil reservoir, and we compare with using Newton's method. The Newton-like method achieves a speedup of between 39% and 84% for systems with between 4,800 and 52,800 state variables.
翻译:在本文中,我们提出了一个基于模型削减技术的牛顿式方法,该方法可用于隐含数字方法,以接近普通差分方程式的解决方案。在每次迭代中,类似牛顿式的方法解决了减少顺序线性系统,以计算牛顿步骤。这个缩小的系统是使用预测矩阵来推导的,该矩阵使用正确的正正方位分解法获得,在数字方法的每个时间步骤中经过更新。我们证明,该方法可以与Euler的隐含方法一起使用,以模拟向油库注入二氧化碳$2美元,我们与使用牛顿法进行比较。对于4 800至52 800国变量的系统来说,牛顿式方法可以实现39%至84%的加速率。</s>