Deep neural networks, as a powerful system to represent high dimensional complex functions, play a key role in deep learning. Convergence of deep neural networks is a fundamental issue in building the mathematical foundation for deep learning. We investigated the convergence of deep ReLU networks and deep convolutional neural networks in two recent researches (arXiv:2107.12530, 2109.13542). Only the Rectified Linear Unit (ReLU) activation was studied therein, and the important pooling strategy was not considered. In this current work, we study the convergence of deep neural networks as the depth tends to infinity for two other important activation functions: the leaky ReLU and the sigmoid function. Pooling will also be studied. As a result, we prove that the sufficient condition established in arXiv:2107.12530, 2109.13542 is still sufficient for the leaky ReLU networks. For contractive activation functions such as the sigmoid function, we establish a weaker sufficient condition for uniform convergence of deep neural networks.
翻译:深神经网络是代表高维复杂功能的强大系统,在深层学习中发挥着关键作用。深神经网络的融合是建立深深学习数学基础的根本问题。我们在最近的两项研究(arXiv:2107.12530,2109.1354.2)中调查了深ReLU网络和深革命神经网络的融合情况(arXiv:2107.12530,2109.13542)中最近的两项研究(arXiv:2107.12530,2109.13542)中,其中只研究了经过校正的线条线条装置的激活,而没有考虑重要的集合战略。在目前的工作中,我们研究深神经网络的融合情况,因为深神经网络的深度往往无法满足另外两项重要的激活功能:渗漏 ReLU 和 sigmimos 功能。我们还将研究集合问题。结果,我们证明在arXiv:2107.12530, 2109.3542中确立的充分条件仍然足以满足渗漏的ReLU 网络。对于像样机功能这样的合同激活功能,我们为深海神经网络的统一融合创造了一个较弱的条件。