Intelligent test requires efficient and effective analysis of high-dimensional data in a large scale. Traditionally, the analysis is often conducted by human experts, but it is not scalable in the era of big data. To tackle this challenge, variable selection has been recently introduced to intelligent test. However, in practice, we encounter scenarios where certain variables (e.g. some specific processing conditions for a device under test) must be maintained after variable selection. We call this conditional variable selection, which has not been well investigated for embedded or deep-learning-based variable selection methods. In this paper, we discuss a novel conditional variable selection framework that can select the most important candidate variables given a set of preselected variables.
翻译:智能测试需要大规模高效和有效地分析高维数据。 传统上, 分析通常由人类专家进行, 但在大数据时代是无法缩放的。 为了应对这一挑战, 最近引入了智能测试, 最近引入了变量选择。 然而, 在实践上, 我们遇到的情景是, 在选择变量后, 某些变量( 例如测试设备的某些特定处理条件) 仍必须维持。 我们称之为有条件变量选择, 这个条件变量选择尚未通过嵌入或深层学习的变量选择方法得到很好调查。 在本文中, 我们讨论一个新的有条件变量选择框架, 能够根据一组预选变量来选择最重要的候选变量 。