Riemannian optimization uses local methods to solve optimization problems whose constraint set is a smooth manifold. A linear step along some descent direction usually leaves the constraints, and hence retraction maps are used to approximate the exponential map and return to the manifold. For many common matrix manifolds, retraction maps are available, with more or less explicit formulas. For implicitly-defined manifolds, suitable retraction maps are difficult to compute. We therefore develop an algorithm which uses homotopy continuation to compute the Euclidean distance retraction for any implicitly-defined submanifold of R^n, and prove convergence results. We also consider statistical models as Riemannian submanifolds of the probability simplex with the Fisher metric. Replacing Euclidean distance with maximum likelihood results in a map which we prove is a retraction. In fact, we prove the retraction is second-order; with the Levi-Civita connection associated to the Fisher metric, it approximates geodesics to second-order accuracy.


翻译:Riemannian 优化使用本地方法解决优化问题, 其限制设置为平滑的方块。 沿着某些下行方向的线性步骤通常会留下限制, 因此撤回图会用来接近指数地图并返回元件。 对于许多通用矩阵元件来说, 撤回图是有的, 并有或多或少明确的公式。 对于隐含定义的元件, 合适的撤回图难以计算。 因此, 我们开发了一种算法, 用同质的继续计算 Euclidean 距离撤回 Rón 任何隐含定义的子段, 并证明结果一致。 我们还将统计模型视为概率简单x 与 Fisherish 度的 Rein 的 Reekmannian 子段。 将 Euclidean 距离和最大可能性结果重新定位在地图上, 我们证明这是一次撤回。 事实上, 我们证明撤回是次顺序; 与Fisheral 度相关的Lev- Civita 连接, 它将大地学比为第二级精确度 。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员