The bootstrap is a popular data-driven method to quantify statistical uncertainty, but for modern high-dimensional problems, it could suffer from huge computational costs due to the need to repeatedly generate resamples and refit models. Recent work has shown that it is possible to reduce the resampling effort dramatically, even down to one Monte Carlo replication, for constructing asymptotically valid confidence intervals. We derive finite-sample coverage error bounds for these ``cheap'' bootstrap confidence intervals that shed light on their behaviors for large-scale problems where the curb of resampling effort is important. Our results show that the cheap bootstrap using a small number of resamples has comparable coverages as traditional bootstraps using infinite resamples, even when the dimension grows closely with the sample size. We validate our theoretical results and compare the performances of the cheap bootstrap with other benchmarks via a range of experiments.
翻译:靴子是用来量化统计不确定性的流行数据驱动方法,但对于现代高维问题来说,由于需要反复生成重新标本和改造模型,它可能会遭受巨大的计算成本。最近的工作表明,即使可以大幅降低重新标本的努力,甚至可以降低一个蒙特卡洛复制版,以构建无试样的有效信任间隔。我们为这些“cheap”的靴子套底信任间隔得出了一定的标本覆盖误差,以揭示它们对于限制重新标本工作十分重要的大规模问题的行为。我们的结果显示,使用少量新标本的廉价靴子具有类似的覆盖,如使用无限的标本的传统靴子陷阱,即使尺寸与样本大小相近。我们验证了我们的理论结果,并通过一系列实验将廉价靴子的性能与其他基准进行比较。