We study the problem of learning unknown parameters in stochastic interacting particle systems with polynomial drift, interaction and diffusion functions from the path of one single particle in the system. Our estimator is obtained by solving a linear system which is constructed by imposing appropriate conditions on the moments of the invariant distribution of the mean field limit and on the quadratic variation of the process. Our approach is easy to implement as it only requires the approximation of the moments via the ergodic theorem and the solution of a low-dimensional linear system. Moreover, we prove that our estimator is asymptotically unbiased in the limits of infinite data and infinite number of particles (mean field limit). In addition, we present several numerical experiments that validate the theoretical analysis and show the effectiveness of our methodology to accurately infer parameters in systems of interacting particles.
翻译:我们研究从系统中一个粒子的路径上学习具有多元漂移、互动和扩散功能的随机交互粒子系统中的未知参数的问题。我们的测算器是通过解决一个线性系统获得的,这个系统是通过对平均场限的不定分布时刻和过程的二次变异施加适当条件来构建的。我们的方法很容易实施,因为它只需要通过直径定理和低维线性系统的解决办法来接近瞬时。此外,我们证明我们的测算器在无限数据和无限粒子数量(平均场限)的限度上是无差别的。此外,我们提出了一些数字实验,以证实理论分析,并表明我们精确推导出相互作用粒子系统参数的方法的有效性。