This paper proposes a Kolmogorov-Smirnov type statistic and a Cram\'er-von Mises type statistic to test linearity in semi-functional partially linear regression models. Our test statistics are based on a residual marked empirical process indexed by a randomly projected functional covariate,which is able to circumvent the "curse of dimensionality" brought by the functional covariate. The asymptotic properties of the proposed test statistics under the null, the fixed alternative, and a sequence of local alternatives converging to the null at the $n^{1/2}$ rate are established. A straightforward wild bootstrap procedure is suggested to estimate the critical values that are required to carry out the tests in practical applications. Results from an extensive simulation study show that our tests perform reasonably well in finite samples.Finally, we apply our tests to the Tecator and AEMET datasets to check whether the assumption of linearity is supported by these datasets.
翻译:本文建议使用 Kolmogorov- Smirnov 类型统计数据和 Cram\'er- von Mises 类型统计数据来测试半功能部分线性回归模型中的线性。 我们的测试统计数据基于一个由随机预测的功能共变体索引的剩余显著的经验过程, 该实验过程能够绕过功能共变体带来的“ 维度诅咒 ” 。 无效下的拟议测试统计数据的无症状属性、 固定替代品, 以及一系列本地替代品相趋一致的顺序, 以$n ⁇ 1/2 美元的比率计算。 提出了一个直接的野靴套程序, 以估计实际应用中进行测试所需的关键值。 广泛模拟研究的结果显示, 我们的测试在有限样本中表现得相当良好。 最后, 我们将测试结果应用到调试器和 AMET 数据集, 以检查这些数据集是否支持对线性假设 。