Understanding single-agent dynamics from collective behaviors in natural swarms is crucial for informing robot controller designs in artificial swarms and multiagent robotic systems. However, the complexity in agent-to-agent interactions and the decentralized nature of most swarms pose a significant challenge to the extraction of single-robot control laws from global behavior. In this work, we consider the important task of learning decentralized single-robot controllers based solely on the state observations of a swarm's trajectory. We present a general framework by adopting knowledge-based neural ordinary differential equations (KNODE) -- a hybrid machine learning method capable of combining artificial neural networks with known agent dynamics. Our approach distinguishes itself from most prior works in that we do not require action data for learning. We apply our framework to two different flocking swarms in 2D and 3D respectively, and demonstrate efficient training by leveraging the graphical structure of the swarms' information network. We further show that the learnt single-robot controllers can not only reproduce flocking behavior in the original swarm but also scale to swarms with more robots.
翻译:了解自然群群集体行为中的单一剂动态对于告知人工群和多剂机器人系统中的机器人控制器设计至关重要。 然而,代理人与代理人互动的复杂性以及大多数群群的分散性质对从全球行为中提取单一机器人控制法提出了重大挑战。 在这项工作中,我们认为学习分散的单一机器人控制器的重要任务完全基于对群体轨迹的状态观测。 我们通过采用基于知识的神经普通差异方程式(KNOD)提出了一个总体框架,这是一种混合机器学习方法,能够将已知的剂动态与人造神经网络结合起来。 我们的方法将自己与大多数先前的工作区分开来,因为我们不需要行动数据来学习。 我们分别将我们的框架应用于2D和3D的两个不同的群群群,并通过利用群群信息网络的图形结构来展示有效的培训。 我们还进一步表明,学习的单一机器人控制器不仅可以在原始群中复制群状行为,而且可以与更多的机器人一起复制成群状。