Dynamical systems models for controlling multi-agent swarms have demonstrated advances toward resilient, decentralized navigation algorithms. We previously introduced the NeuroSwarms controller, in which agent-based interactions were modeled by analogy to neuronal network interactions, including attractor dynamics and phase synchrony, that have been theorized to operate within hippocampal place-cell circuits in navigating rodents. This complexity precludes linear analyses of stability, controllability, and performance typically used to study conventional swarm models. Further, tuning dynamical controllers by hand or grid search is often inadequate due to the complexity of objectives, dimensionality of model parameters, and computational costs of simulation-based sampling. Here, we present a framework for tuning dynamical controller models of autonomous multi-agent systems based on Bayesian Optimization (BayesOpt). Our approach utilizes a task-dependent objective function to train Gaussian Processes (GPs) as surrogate models to achieve adaptive and efficient exploration of a dynamical controller model's parameter space. We demonstrate this approach by studying an objective function selecting for NeuroSwarms behaviors that cooperatively localize and capture spatially distributed rewards under time pressure. We generalized task performance across environments by combining scores for simulations in distinct geometries. To validate search performance, we compared high-dimensional clustering for high- vs. low-likelihood parameter points by visualizing sample trajectories in Uniform Manifold Approximation and Projection (UMAP) embeddings. Our findings show that adaptive, sample-efficient evaluation of the self-organizing behavioral capacities of complex systems, including dynamical swarm controllers, can accelerate the translation of neuroscientific theory to applied domains.
翻译:用于控制多试剂群群的动态系统模型已经展示出向弹性和分散式导航算法的进步。 我们以前引入了 NeuroSwarms 控制器, 其代理式互动模式通过类推神经网络互动, 包括吸引动态和相相同步, 其理论化框架已经形成, 用于在河马运动中操作, 用于导航鼠标。 这种复杂性排除了对稳定性、 可控性和通常用于研究常规群温模型的性能进行线性分析。 此外, 通过手或电网搜索对动态控制器进行调控, 由于目标的复杂性、 模型参数的维度以及模拟抽样取样的计算成本, 因而往往不够充分。 在这里, 我们提出了一个框架, 用于调整以Bayesian Opitimation (BayesOyOpent)为基础的自主多试管系统动态控制器模型的动态控制器模型模型模型模型。 我们用一个目标性功能, 用于对动态控制器模型的适应和高效探索空间模型的参数空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间进行系统进行我们应用。 我们通过研究, 将一个目标性模型的系统, 将一个目标性功能选择, 将一个用于在高空间空间空间空间级的高级智能智能智能智能智能智能智能智能智能智能智能智能分析, 的系统, 的系统, 运行中, 的高级分析, 运行中, 运行中, 运行中, 运行中, 运行中, 展示的运行中, 运行中, 表现表现表现的高级分析。