We adapt a pre-trained Vision-Language-Action (VLA) model (Open-VLA) for dexterous human-robot collaboration with minimal language prompting. Our approach adds (i) FiLM conditioning to visual backbones for task-aware perception, (ii) an auxiliary intent head that predicts collaborator hand pose and target cues, and (iii) action-space post-processing that predicts compact deltas (position/rotation) and PCA-reduced finger joints before mapping to full commands. Using a multi-view, teleoperated Franka and Mimic-hand dataset augmented with MediaPipe hand poses, we demonstrate that delta actions are well-behaved and that four principal components explain ~96% of hand-joint variance. Ablations identify action post-processing as the primary performance driver; auxiliary intent helps, FiLM is mixed, and a directional motion loss is detrimental. A real-time stack (~0.3 s latency on one RTX 4090) composes "pick-up" and "pass" into a long-horizon behavior. We surface "trainer overfitting" to specific demonstrators as the key limitation.


翻译:我们采用预训练的视觉-语言-动作(VLA)模型(Open-VLA),通过最少的语言提示实现灵巧的人机协作。我们的方法增加了:(i)在视觉骨干网络中引入FiLM条件机制,实现任务感知的视觉理解;(ii)一个辅助意图预测头,用于预测协作者的手部姿态和目标线索;(iii)动作空间后处理模块,在映射到完整指令前预测紧凑的增量动作(位置/旋转)和经PCA降维的手指关节。利用通过MediaPipe手部姿态增强的多视角遥操作Franka机械臂与Mimic-hand数据集,我们证明了增量动作具有良好的行为特性,且四个主成分可解释约96%的手部关节方差。消融实验表明,动作后处理是性能提升的主要驱动力;辅助意图预测有一定帮助,FiLM机制效果不一,而方向性运动损失函数则产生负面影响。实时处理栈(在单张RTX 4090上延迟约0.3秒)可将“拾取”与“传递”动作组合为长时程行为。我们揭示了“训练者过拟合”特定演示者成为该方法的主要局限。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员