Marine controlled-source electromagnetic (CSEM) method has proved its potential in detecting highly resistive hydrocarbon bearing formations. A novel frequency domain CSEM inversion approach using fictitious wave domain time stepping modelling is presented. Using Lagrangian-based adjoint state method, the inversion gradient with respect to resistivity can be computed by the product between the forward and adjoint fields. Simulation of the adjoint field using the same modelling engine is challenging as it requires time domain adjoint source time functions while only a few discrete frequencies of the data residual are available for the inversion. A regularized linear inverse problem is formulated in order to estimate a long time series from very few frequency samples. It can then be solved using linear optimization technique, yielding a matrix-free implementation. Instead of computing adjoint source time function one by one at each receiver location, a basis function implementation has been developed such that the inverse problem can be solved only once and reused every time to construct all time-domain adjoint sources. The method allows computing all frequencies of the EM fields in one go without heavy memory and computational overhead, making efficient 3D CSEM inversion feasible. Numerical examples are employed to demonstrate the application of our method.


翻译:海洋控制源电磁(CSEM) 方法证明了其在探测高阻性碳氢化合物承载构造方面的潜力。 演示了一种使用假冒波域域时间阶模型的新型频率域 CSEM 反向方法。 使用以Lagrangian为基础的联合状态方法, 阻力的反向梯度可以由前方和连接字段之间的产品来计算。 使用同一个模型引擎模拟连接字段具有挑战性,因为它需要时间域域与源时间的连接时间功能, 而反向数据残留只有少量的离散频率可用于反向转换。 一种常规的线性线性反向问题是为了从极少的频率样本中估算一个长时间序列。 然后, 可以用线性优化技术来解决, 产生一个不使用矩阵的操作。 已经开发了一个基础函数, 使得反向问题只能一次性解决, 并且每次再利用来构建所有时间- 偏向连接源。 该方法允许将EM 字段的所有频率都计算成一个不重存储和计算式的轨道, 使 3DSEMEREM 转换为可行的方法得到应用。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员