We present a structure-preserving scheme based on a recently-proposed mixed formulation for incompressible hyperelasticity formulated in principal stretches. Although there exist Hamiltonians introduced for quasi-incompressible elastodynamics based on different variational formulations, the one in the fully incompressible regime has yet been identified in the literature. The adopted mixed formulation naturally provides a new Hamiltonian for fully incompressible elastodynamics. Invoking the discrete gradient formula, we are able to design fully-discrete schemes that preserve the Hamiltonian and momenta. The scaled mid-point formula, another popular option for constructing algorithmic stresses, is analyzed and demonstrated to be non-robust numerically. The generalized Taylor-Hood element based on the spline technology conveniently provides a higher-order, robust, and inf-sup stable spatial discretization option for finite strain analysis. To enhance the element performance in volume conservation, the grad-div stabilization, a technique initially developed in computational fluid dynamics, is introduced here for elastodynamics. It is shown that the stabilization term does not impose additional restrictions for the algorithmic stress to respect the invariants, leading to an energy-decaying and momentum-conserving fully discrete scheme. A set of numerical examples is provided to justify the claimed properties. The grad-div stabilization is found to enhance the discrete mass conservation effectively. Furthermore, in contrast to conventional algorithms based on Cardano's formula and perturbation techniques, the spectral decomposition algorithm developed by Scherzinger and Dohrmann is robust and accurate to ensure the discrete conservation laws and is thus recommended for stretch-based material modeling.


翻译:我们提出一个结构保存计划,其根据是最近提出的一种不压缩的混合配方,用于在主伸缩中制成的直流超弹性。虽然存在基于不同变异配制的半压抑制性肝素动力学的汉密尔顿人,但文献中尚未发现完全压抑性制度中的一种。采纳的混合配方自然为完全压抑性肝素动力学提供了一种新的汉密尔顿式。援引离散的梯度公式,我们能够设计完全分解的、保存汉密尔顿和荷马力的离析性定值。中点公式,即另一个用于构建算动的常规压力的流行选项,正在被分析,并被证明在数字上是非紫外的。基于螺旋型技术的普遍的泰勒-Hood元素,为定型神经压力分析提供了更高顺序、更强、更坚固和内部稳定的空间分解选项。为了提高体积的元素的性能性能,模型和计算性液动力动力动力学最初开发的一种技术,在这里为 Elasto 动力学所引入的。它表明,稳定化术语并没有对稳定性能施加额外的限制,因此导致数字动力学压力压力压力。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2019年3月5日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员