We obtain the spline recovery method on a $d$-dimensional simplex $T$ that uses as information values and gradients of a function $f$ at the vertices of $T$ and is optimal for recovery of $f({\bf w})$ at every point ${\bf w}$ of an admissible domain $P$ containing $T$ on the class $W^2(P)$ of twice differentiable functions on $P$ with uniformly bounded second order derivatives in any direction. If, in particular, every face of $T$ (of any dimension) contains its circumcenter, we can take $P=T$. We also find the error function of the pointwise optimal method which turns out to be a function in $W^2(P)$ with zero information. The error function is a piecewise quadratic $C^1$-function over a certain polyhedral partition and can be considered as a multivariate analogue of the classical Euler spline $\phi_2$. The pointwise optimal method is a continuous spline of degree two (with some pieces of degree one) over the same partition.
翻译:我们从一个以美元为维维的简单美元美元T$的Spline回收方法,该方法将一个函数的美元值和梯度用作美元顶点的美元值和美元值的信息值和梯度,并且最适宜于在每点美元美元(bfww)美元(bfw)美元)的可受理域美元美元美元(P)中回收美元美元($P美元),在1美元(W2美元)(P美元)的类别上,该值为2美元(美元)(美元)(美元)(美元)(美元)和美元(美元)(美元)(美元(任何维度)的任何方向的第二级衍生物)上,具有两种不同的函数。如果(美元(任何维度)的每一面都含有其环中值,我们可以采取$P=T$(T$)。我们还发现,在零信息中发现点最佳方法的错误函数是美元(W2)(P美元)(美元)(美元)(P)中,该值为零信息。错误函数是某些多面分区分区上的一个小曲四方形四方形的美元(C%1)功能,可被视为古典Euler spine spline $\2的多变量模拟模拟模拟模拟。最佳方法是连续的2度。