This paper investigates a time discrete variational model for splines in Wasserstein spaces to interpolate probability measures. Cubic splines in Euclidean space are known to minimize the integrated squared acceleration subject to a set of interpolation constraints. As generalization on the space of probability measures the integral over the squared acceleration is considered as a spline energy and regularized by addition of the usual action functional. Both energies are then discretized in time using local Wasserstein-2 distances and the generalized Wasserstein barycenter. The existence of time discrete regularized splines for given interpolation conditions is established. On the subspace of Gaussian distributions, the spline interpolation problem is solved explicitly and consistency in the discrete to continuous limit is shown. The computation of time discrete splines is implemented numerically, based on entropy regularization and the Sinkhorn algorithm. A variant of the iPALM method is applied for the minimization of the fully discrete functional. A variety of numerical examples demonstrate the robustness of the approach and show striking characteristics of the method. As a particular application the spline interpolation for synthesized textures is presented.
翻译:本文调查了瓦塞林空格中样板的时间离散变异模型,以内推概率度量。已知欧几里德空间中的立方样样模型可以尽量减少集成平方加速度,但受一系列的内插限制。当对概率空间进行一般测量时,平方加速度的内分度被视为一种浮度能量,并通过增加通常的动作功能加以规范。两种能量随后都使用本地瓦西斯坦-2距离和通用的瓦西斯坦巴列中心在时间上分离。为特定的内插条件建立了时间离散固定样条。在高斯分布的子空间中,明确解决了浮线内插问题,并展示了离散至连续限制的一致性。时间离散样条线的计算以数字方式进行,根据酶调整和Sinkhorn算法进行。对完全离散功能的最小化应用采用了iPALM方法的变式。各种数字示例表明该方法的稳健性,并显示方法的惊人性特征。作为特定应用的文本合成工具。