In this paper we are concerned with Trefftz discretizations of the time-dependent linear wave equation in anisotropic media in arbitrary space dimensional domains $\Omega \subset \mathbb{R}^d~ (d\in \mathbb{N})$. We propose two variants of the Trefftz DG method, define novel plane wave basis functions based on rigorous choices of scaling transformations and coordinate transformations, and prove that the corresponding approximate solutions possess optimal-order error estimates with respect to the meshwidth $h$ and the condition number of the coefficient matrices, respectively. Furthermore, we propose the global Trefftz DG method combined with local DG methods to solve the time-dependent linear nonhomogeneous wave equation in anisotropic media. In particular, the error analysis holds for the (nonhomogeneous) Dirichlet, Neumann, and mixed boundary conditions from the original PDEs. The numerical results verify the validity of the theoretical results, and show that the resulting approximate solutions possess high accuracy.
翻译:在本文中,我们关注在任意空间空间维域中的厌食介质中Trefftz对时间依赖线性波方程式的分解 $\ Omega\ subset \ mathbb{R ⁇ d~ (d\ in\ mathb{N})$。我们提出Trefftz DG方法的两个变式,根据严格的缩放转换选择和协调转换,定义新的平面波基功能,并证明相应的近似解决方案分别拥有对网状美元和系数矩阵条件数的最佳顺序错误估计。此外,我们提议采用全球Trefftz DG方法,结合当地DG方法,在厌食介质介质中解决时间依赖线性线性非热波方程式。特别是,对原PDEs的(无血源的)迪里赫莱特、纽曼和混合边界条件的错误分析。数字结果证实了理论结果的有效性,并表明由此产生的近似解决办法具有很高的准确性。