In this paper, we propose a monotone approximation scheme for a class of fully nonlinear partial integro-differential equations (PIDEs) which characterize the nonlinear $\alpha$-stable L\'{e}vy processes under sublinear expectation space with $\alpha \in(1,2)$. Two main results are obtained: (i) the error bounds for the monotone approximation scheme of nonlinear PIDEs, and (ii) the convergence rates of a generalized central limit theorem of Bayraktar-Munk for $\alpha$-stable random variables under sublinear expectation. Our proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.


翻译:在本文中,我们建议为一类完全非线性部分内分异方程(PIDEs)提供一个单质近似方案,在亚线性预期空间下的非线性 $\alpha$- sable L\\'{e}vy 进程以$\alpha\ in(1,2)$为特征。主要结果有两个主要:(一) 非线性PIDE单项近似方案的误差界限,以及(二) Bayraktar-Munk 通用中央界限理论在亚线性预期下对$\alpha$- sable L\\'{e}vy 随机变量的趋同率。我们的证据使用和扩展Krylov和Barles-Jakobsen采用的技术。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员