In this article, we develop and analyse a new spectral method to solve the semi-classical Schr\"odinger equation based on the Gaussian wave-packet transform (GWPT) and Hagedorn's semi-classical wave-packets (HWP). The GWPT equivalently recasts the highly oscillatory wave equation as a much less oscillatory one (the $w$ equation) coupled with a set of ordinary differential equations governing the dynamics of the so-called GWPT parameters. The Hamiltonian of the $ w $ equation consists of a quadratic part and a small non-quadratic perturbation, which is of order $ \mathcal{O}(\sqrt{\varepsilon }) $, where $ \varepsilon\ll 1 $ is the rescaled Planck's constant. By expanding the solution of the $ w $ equation as a superposition of Hagedorn's wave-packets, we construct a spectral method while the $ \mathcal{O}(\sqrt{\varepsilon}) $ perturbation part is treated by the Galerkin approximation. This numerical implementation of the GWPT avoids imposing artificial boundary conditions and facilitates rigorous numerical analysis. For arbitrary dimensional cases, we establish how the error of solving the semi-classical Schr\"odinger equation with the GWPT is determined by the errors of solving the $ w $ equation and the GWPT parameters. We prove that this scheme has the spectral convergence with respect to the number of Hagedorn's wave-packets in one dimension. Extensive numerical tests are provided to demonstrate the properties of the proposed method.
翻译:在此文章中, 我们开发并分析一种新的光谱方法, 以解决半古典的Schr\" odinger 方程式。 美元方程式的汉密尔顿式包含一个二次方程式部分和一个小型的非二次方程式的渗透性方程, 这是按美元计算值的半经典波质容器( HWP ) 。 全球升温T 相当地将高度振动波方程式重新定位为更小的振动方程式( 美元方程式), 以及一套规范所谓的全球升温T参数动态的普通差异方程。 美元方程式的汉密尔顿式由一个二次方程式部分组成, 一个小的非二次方程式的振动方程参数 。 美元方程式的数值值值的数值值值值值是 。 美元的数值值比值的值值值是 。 以数值的值值值值的值值值的值值计算法 。