In this article, we develop and analyse a new spectral method to solve the semi-classical Schr\"odinger equation based on the Gaussian wave-packet transform (GWPT) and Hagedorn's semi-classical wave-packets (HWP). The GWPT equivalently recasts the highly oscillatory wave equation as a much less oscillatory one (the $w$ equation) coupled with a set of ordinary differential equations governing the dynamics of the so-called GWPT parameters. The Hamiltonian of the $ w $ equation consists of a quadratic part and a small non-quadratic perturbation, which is of order $ \mathcal{O}(\sqrt{\varepsilon }) $, where $ \varepsilon\ll 1 $ is the rescaled Planck's constant. By expanding the solution of the $ w $ equation as a superposition of Hagedorn's wave-packets, we construct a spectral method while the $ \mathcal{O}(\sqrt{\varepsilon}) $ perturbation part is treated by the Galerkin approximation. This numerical implementation of the GWPT avoids imposing artificial boundary conditions and facilitates rigorous numerical analysis. For arbitrary dimensional cases, we establish how the error of solving the semi-classical Schr\"odinger equation with the GWPT is determined by the errors of solving the $ w $ equation and the GWPT parameters. We prove that this scheme has the spectral convergence with respect to the number of Hagedorn's wave-packets in one dimension. Extensive numerical tests are provided to demonstrate the properties of the proposed method.


翻译:在此文章中, 我们开发并分析一种新的光谱方法, 以解决半古典的Schr\" odinger 方程式。 美元方程式的汉密尔顿式包含一个二次方程式部分和一个小型的非二次方程式的渗透性方程, 这是按美元计算值的半经典波质容器( HWP ) 。 全球升温T 相当地将高度振动波方程式重新定位为更小的振动方程式( 美元方程式), 以及一套规范所谓的全球升温T参数动态的普通差异方程。 美元方程式的汉密尔顿式由一个二次方程式部分组成, 一个小的非二次方程式的振动方程参数 。 美元方程式的数值值值的数值值值值值是 。 美元的数值值比值的值值值是 。 以数值的值值值值的值值值的值值计算法 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员