One- and multi-dimensional stochastic Maxwell equations with additive noise are considered in this paper. It is known that such system can be written in the multi-symplectic structure, and the stochastic energy increases linearly in time. High order discontinuous Galerkin methods are designed for the stochastic Maxwell equations with additive noise, and we show that the proposed methods satisfy the discrete form of the stochastic energy linear growth property and preserve the multi-symplectic structure on the discrete level. Optimal error estimate of the semi-discrete DG method is also analyzed. The fully discrete methods are obtained by coupling with symplectic temporal discretizations. One- and two-dimensional numerical results are provided to demonstrate the performance of the proposed methods, and optimal error estimates and linear growth of the discrete energy can be observed for all cases.


翻译:本文考虑了含有添加噪声的单维和多维随机Maxwell方程式。众所周知,这种系统可以写在多中位结构中,而随机能量则在时间上线性地增加。高有序不连续的Galerkin方法是为具有添加噪声的随机Maxwell方程式设计的,我们表明,建议的方法满足了随机能量线性增长特性的离散形式,并维护了离散水平上的多中位结构。还分析了半分位DG方法的最佳误差估计。完全离散的方法是通过与随机时间分解的混合获得的。提供了一维和二维的数字结果,以证明拟议方法的性能,并且对所有情况都可以看到最佳误差估计和离散能量的线性增长。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员