As a main use case of 5G and Beyond wireless network, the ever-increasing machine type communications (MTC) devices pose critical challenges over MTC network in recent years. It is imperative to support massive MTC devices with limited resources. To this end, Non-orthogonal multiple access (NOMA) based random access network has been deemed as a prospective candidate for MTC network. In this paper, we propose a deep reinforcement learning (RL) based approach for NOMA-based random access network with truncated channel inversion power control. Specifically, each MTC device randomly selects a pre-defined power level with a certain probability for data transmission. Devices are using channel inversion power control yet subject to the upper bound of the transmission power. Due to the stochastic feature of the channel fading and the limited transmission power, devices with different achievable power levels have been categorized as different types of devices. In order to achieve high throughput with considering the fairness between all devices, two objective functions are formulated. One is to maximize the minimum long-term expected throughput of all MTC devices, the other is to maximize the geometric mean of the long-term expected throughput for all MTC devices. A Policy based deep reinforcement learning approach is further applied to tune the transmission probabilities of each device to solve the formulated optimization problems. Extensive simulations are conducted to show the merits of our proposed approach.


翻译:作为5G和5G无线网络的主要使用案例,不断增长的机器类型通信设备近年来对MTC网络构成重大挑战,必须支持资源有限的大型MTC设备。为此,基于非横向多重访问(NOMA)随机访问网络被视为MTC网络的潜在候选对象。在本文件中,我们建议对基于NOMA的随机访问网络采用基于深度强化学习(RL)的方法,并配有短道通道反向电源控制。具体地说,每个MTC设备随机地选择了预先确定的权力水平,并有一定的数据传输概率。设备正在使用频道反向电源控制,但受传输能力上限的限制。由于频道的模糊性和有限的传输能力,因此将具有不同可实现能力水平的装置归类为不同类型的装置。为了在考虑所有装置之间的公平性的情况下实现高传输率,我们制定了两个目标功能。为了最大限度地实现所有MTC设备的最低长期预期值,其他设备正在使用频道反向动力控制,但受传输能力控制,但受传输能力上限的限制。由于频道的模糊性和有限的传输能力,因此,因此,对以不同可实现不同功能的拟议电流流分析方法进行最大程度的升级。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员