Asteroid exploration has been attracting more attention in recent years. Nevertheless, we have just visited tens of asteroids while we have discovered more than one million bodies. As our current observation and knowledge should be biased, it is essential to explore multiple asteroids directly to better understand the remains of planetary building materials. One of the mission design solutions is utilizing asteroid flyby cycler trajectories with multiple Earth gravity assists. An asteroid flyby cycler trajectory design problem is a subclass of global trajectory optimization problems with multiple flybys, involving a trajectory optimization problem for a given flyby sequence and a combinatorial optimization problem to decide the sequence of the flybys. As the number of flyby bodies grows, the computation time of this optimization problem expands maliciously. This paper presents a new method to design asteroid flyby cycler trajectories utilizing a surrogate model constructed by deep neural networks approximating trajectory optimization results. Since one of the bottlenecks of machine learning approaches is the computation time to generate massive trajectory databases, we propose an efficient database generation strategy by introducing pseudo-asteroids satisfying the Karush-Kuhn-Tucker conditions. The numerical result applied to JAXA's DESTINY+ mission shows that the proposed method is practically applicable to space mission design and can significantly reduce the computational time for searching asteroid flyby sequences.
翻译:最近几年来,小行星循环轨迹的探索引起了更多的关注。然而,我们刚刚访问了数十个小行星,而我们发现了100多万个尸体。由于我们目前的观测和知识应该有偏差,因此必须直接探索多个小行星,以便更好地了解行星建筑材料的残骸。任务设计解决方案之一是利用具有多重地球重力的小行星飞行周期轨道轨迹。小行星飞行周期周期轨迹设计问题是一个小类全球轨迹优化问题,包括多个飞翔器的多飞翔序列和组合优化问题,以决定飞翔序列。随着飞翔机体数目的增加,这一优化问题的计算时间会恶意地扩大。本文介绍了一种新方法,利用由深神经网络建造的隐形模型来设计小行星飞行周期轨迹轨迹。由于机器学习方法的瓶颈之一是建立大规模轨迹数据库的计算时间,因此我们提议了一个高效的数据库生成战略,即引入假的模型来满足Karush-Kuhn的飞行序列。随着飞行机身体的增多,这一优化问题的计算时间会增加,这一天体优化问题的计算时间会增加。本文介绍了一种新的方法来设计小行星飞行轨道轨迹轨迹轨迹模型设计设计,从而大大地算上可以应用地分析。