We consider the task of lexicographic direct access to query answers. That is, we want to simulate an array containing the answers of a join query sorted in a lexicographic order chosen by the user. A recent dichotomy showed for which queries and orders this task can be done in polylogarithmic access time after quasilinear preprocessing, but this dichotomy does not tell us how much time is required in the cases classified as hard. We determine the preprocessing time needed to achieve polylogarithmic access time for all self-join free queries and all lexicographical orders. To this end, we propose a decomposition-based general algorithm for direct access on join queries. We then explore its optimality by proving lower bounds for the preprocessing time based on the hardness of a certain online Set-Disjointness problem, which shows that our algorithm's bounds are tight for all lexicographic orders on self-join free queries. Then, we prove the hardness of Set-Disjointness based on the Zero-Clique Conjecture which is an established conjecture from fine-grained complexity theory. We also show that similar techniques can be used to prove that, for enumerating answers to Loomis-Whitney joins, it is not possible to significantly improve upon trivially computing all answers at preprocessing. This, in turn, gives further evidence (based on the Zero-Clique Conjecture) to the enumeration hardness of self-join free cyclic joins with respect to linear preprocessing and constant delay.
翻译:我们考虑的是语言学直接访问查询答案的任务 。 也就是说, 我们想要模拟包含合并查询答案的阵列, 由用户选择的词汇顺序排序。 最近的一个二分法显示, 在准线性预处理后, 可以在多对数访问时间里查询和命令此项任务, 但这一二分法并不能告诉我们在被归类为硬的案例中需要多少时间。 我们决定了所有自join免费查询和所有地名录秩序实现多对数访问时间所需的预处理时间。 为此, 我们提议在合并查询中直接访问一个基于分解的通用算法。 我们然后探索其最佳性, 根据某种在线Set- Discontactive 问题的难度来证明预处理时间的下限, 这表明我们算法的界限在自join 免费查询的所有案例中都很紧。 然后, 我们证明基于 Zero- Cliquenal 直线性解算方法的难度是固定的直线性一般算法, 而不是精确的精确性精确性解算法, 我们也展示了类似的技术, 使得精细化前的精细的精细的精度进入简单的精度, 。 我们也用到精确的精细的精细的精细的精细的算法的精细的精细的精细的精细的计算理论, 。