Physical neural networks are promising candidates for next generation artificial intelligence hardware. In such architectures, neurons and connections are physically realized and do not leverage digital, i.e. practically infinite signal-to-noise ratio digital concepts. They therefore are prone to noise, and base don analytical derivations we here introduce connectivity topologies, ghost neurons as well as pooling as noise mitigation strategies. Finally, we demonstrate the effectiveness of the combined methods based on a fully trained neural network classifying the MNIST handwritten digits.
翻译:物理神经网络是下一代人造智能硬件的有希望的候选体。 在这类建筑中,神经元和连接已经实现,并且没有利用数字,即几乎无限的信号对噪音比例数字概念。 因此,它们容易受到噪音的影响,并且基于分析的衍生数据,我们在这里引入了连接地、幽灵神经以及噪音缓解战略。 最后,我们展示了基于对MNIST手写数字进行分类的经过充分训练的神经网络的综合方法的有效性。