Solving systems of polynomial equations is a central problem in nonlinear and computational algebra. Since Buchberger's algorithm for computing Gr\"obner bases in the 60s, there has been a lot of progress in this domain. Moreover, these equations have been employed to model and solve problems from diverse disciplines such as biology, cryptography, and robotics. Currently, we have a good understanding of how to solve generic systems from a theoretical and algorithmic point of view. However, polynomial equations encountered in practice are usually structured, and so many properties and results about generic systems do not apply to them. For this reason, a common trend in the last decades has been to develop mathematical and algorithmic frameworks to exploit specific structures of systems of polynomials. Arguably, the most common structure is sparsity; that is, the polynomials of the systems only involve a few monomials. Since Bernstein, Khovanskii, and Kushnirenko's work on the expected number of solutions of sparse systems, toric geometry has been the default mathematical framework to employ sparsity. In particular, it is the crux of the matter behind the extension of classical tools to systems, such as resultant computations, homotopy continuation methods, and most recently, Gr\"obner bases. In this work, we will review these classical tools, their extensions, and recent progress in exploiting sparsity for solving polynomial systems. This manuscript complements its homonymous tutorial presented at the conference ISSAC 2022.


翻译:解决多式方程式系统是非线性和计算代数中的一个中心问题。 自Buchberger60年代计算Gr\'obner基数的计算算法以来, 这一领域已经取得了许多进展。 此外, 这些方程式被用于模拟和解决生物、 加密和机器人等不同学科的问题。 目前, 我们从理论和算法的角度对如何解决通用系统有很好的理解。 然而, 实践中遇到的多式方程式通常是结构化的, 通用系统的许多属性和结果并不适用于它们。 由于这个原因, 过去几十年的一个共同趋势是开发数学和算法框架来利用多式系统的具体结构。 可以说, 最常见的结构是偏狭的; 也就是说, 这些系统的多式数只涉及几个单数。 自伯恩斯坦、 科文斯基和库斯奈连连克的多式方程式通常结构, 如此众多的通用系统的属性和结果和结果都不适用于它们。 由于我们所预见的稀有的系统, 直径直的直径几度测量测量系统, 最近的一个常态的基数度框架, 也是其最默认的摩质的计算工具。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员