Recently, S. Arlot and R. Genuer have shown that a model of random forests outperforms its single-tree counterpart in the estimation of $\alpha-$H\"older functions, $\alpha\leq2$. This backs up the idea that ensembles of tree estimators are smoother estimators than single trees. On the other hand, most positive optimality results on Bayesian tree-based methods assume that $\alpha\leq1$. Naturally, one wonders whether Bayesian counterparts of forest estimators are optimal on smoother classes, just like it has been observed for frequentist estimators for $\alpha\leq 2$. We dwell on the problem of density estimation and introduce an ensemble estimator from the classical (truncated) P\'olya tree construction in Bayesian nonparametrics. The resulting Bayesian forest estimator is shown to lead to optimal posterior contraction rates, up to logarithmic terms, for the Hellinger and $L^1$ distances on probability density functions on $[0;1)$ for arbitrary H\"older regularity $\alpha>0$. This improves upon previous results for constructions related to the P\'olya tree prior whose optimality was only proven in the case $\alpha\leq 1$. Also, we introduce an adaptive version of this new prior in the sense that it does not require the knowledge of $\alpha$ to be defined and attain optimality.


翻译:最近, S. Arlot 和 R. Genuer 显示, 随机森林模式在估计$\ alpha- $H\\" older 函数时是否优于其单树对应方, $\ alpha\\ leq2$。 这支持了树估计器集合比单树更平滑的估算器。 另一方面, 巴伊西亚树基方法中最积极的优化结果假定$\ alpha\leq1$。 当然, 人们会怀疑, 巴伊西亚森林估计器的对应方是否优于更平滑的班级, 正如人们观察到的 $\ alpha\ $\ older 估测器的经常估测器 。 我们探讨的是密度估算问题, 并引入了古典( 调的) P\ olya 树的构造比亚亚亚亚亚亚亚 。 结果显示, 只有最佳的后期收缩率, 最高为正数值, 而不是对数值值, 。 在 Helling 和 $\ $\\ a real creal creal real real restial restical oral orate restial 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月6日
Arxiv
0+阅读 · 2021年11月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员