Frequency estimation is one of the most fundamental problems in streaming algorithms. Given a stream $S$ of elements from some universe $U=\{1 \ldots n\}$, the goal is to compute, in a single pass, a short sketch of $S$ so that for any element $i \in U$, one can estimate the number $x_i$ of times $i$ occurs in $S$ based on the sketch alone. Two state of the art solutions to this problems are the Count-Min and Count-Sketch algorithms. The frequency estimator $\tilde{x}$ produced by Count-Min, using $O(1/\varepsilon \cdot \log n)$ dimensions, guarantees that $\|\tilde{x}-x\|_{\infty} \le \varepsilon \|x\|_1$ with high probability, and $\tilde{x} \ge x$ holds deterministically. Also, Count-Min works under the assumption that $x \ge 0$. On the other hand, Count-Sketch, using $O(1/\varepsilon^2 \cdot \log n)$ dimensions, guarantees that $\|\tilde{x}-x\|_{\infty} \le \varepsilon \|x\|_2$ with high probability. A natural question is whether it is possible to design the best of both worlds sketching method, with error guarantees depending on the $\ell_2$ norm and space comparable to Count-Sketch, but (like Count-Min) also has the no-underestimation property. Our main set of results shows that the answer to the above question is negative. We show this in two incomparable computational models: linear sketching and streaming algorithms. We also study the complementary problem, where the sketch is required to not over-estimate, i.e., $\tilde{x} \le x$ should hold always.


翻译:频率估算是流算法中最基本的问题之一 。 根据来自某些宇宙的元素的流值 $S$ x%1\ ldots n% 美元, 目标是在单流中计算一个小草图$S$的短草图, 这样对于任何元素美元, 人们可以根据草图来估计美元乘以美元。 这个问题的两个最新解决方案是 计数- 明和 计数- 克什 的算法。 由伯爵生产的频率估测器 $\ telde{ x} 美元, 目标是在单流中计算一个小素的短草图, 这样可以保证 $trede{ x 美元乘以美元, 美元乘以最高概率, 美元=%x$x$x美元 。 數- 數解算解算法的數據數值應該存在确定性的問題。 另外, 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數- 數-

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员