We prove an optimal $O(n \log n)$ mixing time of the Glauber dynamics for the Ising models with edge activity $\beta \in \left(\frac{\Delta-2}{\Delta}, \frac{\Delta}{\Delta-2}\right)$. This mixing time bound holds even if the maximum degree $\Delta$ is unbounded. We refine the boosting technique developed in [CFYZ21], and prove a new boosting theorem by utilizing the entropic independence defined in [AJK+21]. The theorem relates the modified log-Sobolev (MLS) constant of the Glauber dynamics for a near-critical Ising model to that for an Ising model in a sub-critical regime.
翻译:我们证明,对于具有边缘活动的Ising 模型来说,我们是一个最佳的Glauber 动态混合时间。 边际活动 $\beta\\ delta-2\\ Delta},\ frac\ Delta\ Delta-2\\\\right) 。 这个混合时间约束即使最大度$\ Delta$没有限制, 也维持着。 我们完善了在 [CFYZ21] 开发的提振技术, 并且通过使用[AJK+21] 中定义的对流独立来证明它是一种新的提振理论。 该词将Glauber 动态的修改日志- Sobolev 常数与在亚临界系统中的Ising 模型的修改值联系起来。