Domain adaptation is an effective solution to data scarcity in low-resource scenarios. However, when applied to token-level tasks such as bioNER, domain adaptation methods often suffer from the challenging linguistic characteristics that clinical narratives possess, which leads to unsatisfactory performance. In this paper, we present a simple yet effective hardness-guided domain adaptation (HGDA) framework for bioNER tasks that can effectively leverage the domain hardness information to improve the adaptability of the learnt model in low-resource scenarios. Experimental results on biomedical datasets show that our model can achieve significant performance improvement over the recently published state-of-the-art (SOTA) MetaNER model
翻译:适应领域是解决低资源情景中数据稀缺的有效办法,然而,当应用于生物NER等象征性任务时,领域适应方法往往会受到临床叙述具有的具有挑战性语言特征的影响,从而导致业绩不尽人意。在本文件中,我们为生物NER任务提出了一个简单而有效的硬性指导领域适应框架(HGDA),该框架能够有效地利用域硬性信息,提高所学模型在低资源情景中的适应性。生物医学数据集的实验结果表明,我们的模式可以大大改进最近公布的最先进的MetANER模型的业绩。