The computation of a distance of two time series is time-consuming for any elastic distance function that accounts for misalignments. Among those functions, DTW is the most prominent. However, a recent extensive evaluation has shown that the move-split merge (MSM) metric is superior to DTW regarding the analytical accuracy of 1-NN classifier. Unfortunately, the runtime of the standard dynamic programming algorithm for MSM distance computation is $\Omega(n^2)$, where $n$ is the length of the longest time series. In this paper, we provide approaches to reducing the cost of MSM distance computations by using lower and upper bounds for early pruning paths in the underlying dynamic programming table. For the case of one time series being a constant, we present a linear-time algorithm. In addition, we propose new linear-time heuristics and adapt heuristics known from DTW to computing the MSM distance. One heuristic employs the metric property of MSM and the previously introduced linear-time algorithm. Our experimental studies achieve substantial speed-ups in our approaches compared to previous MSM algorithms. In particular, the running time for MSM is faster for a majority of data sets than a state-of-the-art DTW distance computation.


翻译:计算两个时间序列的距离对于计算不匹配值的任何弹性距离函数都是费时的。在这些函数中,DTW是最突出的。然而,最近一项广泛的评估表明,移动-分解合并(MSM)衡量标准在1-NN分类员的分析准确性方面优于DTW。不幸的是,MSM距离计算标准动态程序算法的运行时间为$\Omega(n)2美元,其中美元是最长时间序列的长度。在本文中,我们提供一些办法,通过在基本动态程序表中使用上下限来降低MSM的距离计算成本。如果一个时间序列是固定的,我们提出线性算法。此外,我们提议新的线性时间超时算法,并调整已知的从DTW距离算法到计算MSMM的距离。一个超前MSM-M-M-M数据计算法,我们的实验研究在比前MSM-M-M-M-M-M-ML多数计算法更快的计算方法中取得了相当大的速度。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月1日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员