The abstract Tile-Assembly Model (aTAM) was initially introduced as a simple model for DNA-based self-assembly, where synthetic strands of DNA are used not as an information storage medium, but rather a material for nano-scale construction. Since then, it has been shown that the aTAM, and variant models thereof, exhibit rich computational dynamics, Turing completeness, and intrinsic universality, a geometric notion of simulation wherein one aTAM system is able to simulate every other aTAM system not just symbolically, but also geometrically. An intrinsically universal system is able to simulate all other systems within some class so that $m\times m$ blocks of tiles behave in all ways like individual tiles in the system to be simulated. In this paper, we explore the notion of a quine in the aTAM with respect to intrinsic universality. Typically a quine refers to a program which does nothing but print its own description with respect to a Turing universal machine which may interpret that description. In this context, we replace the notion of machine with that of an aTAM system and the notion of Turing universality with that of intrinsic universality. Curiously, we find that doing so results in a counterexample to a long-standing conjecture in the theory of tile-assembly, namely that discrete self-similar fractals (DSSFs), fractal shapes generated via substitution tiling, cannot be strictly self-assembled. We find that by growing an aTAM quine, a tile system which intrinsically simulates itself, DSSF structure is naturally exhibited. This paper describes the construction of such a quine and even shows that essentially any desired fractal dimension between 1 and 2 may be achieved.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2020年6月12日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2020年6月12日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员