Federated Magnetic Resonance Imaging (MRI) reconstruction enables multiple hospitals to collaborate distributedly without aggregating local data, thereby protecting patient privacy. However, the data heterogeneity caused by different MRI protocols, insufficient local training data, and limited communication bandwidth inevitably impair global model convergence and updating. In this paper, we propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction. FedPR is a new federated paradigm that adopts a powerful pre-trained model while only learning and communicating the prompts with few learnable parameters, thereby significantly reducing communication costs and achieving competitive performance on limited local data. Moreover, to deal with catastrophic forgetting caused by data heterogeneity, FedPR also updates efficient federated visual prompts that project the local prompts into an approximate null space of the global prompt, thereby suppressing the interference of gradients on the server performance. Extensive experiments on federated MRI show that FedPR significantly outperforms state-of-the-art FL algorithms with <6% of communication costs when given the limited amount of local training data.
翻译:联邦磁共振成像 (MRI) 重构使多个医院在不聚合本地数据的情况下进行分布式合作,从而保护患者隐私。然而,由于不同的 MRI 协议、不充分的本地训练数据和有限的通信带宽所导致的数据异质性不可避免地影响全局模型的收敛和更新。本文提出了一种新算法 FedPR,来学习 MRI 重构的联邦视觉提示的零空间。FedPR 是一种新的联邦范式,它采用了一个强大的预训练模型,同时只学习和通信带有少量可学习参数的提示,从而显著降低通信成本,并在有限的本地数据上实现了有竞争力的性能。此外,为了应对数据异质性导致的灾难性遗忘,FedPR 还更新高效的联邦视觉提示,将本地提示投射到全局提示的近似零空间中,从而抑制了对服务器性能的梯度干扰。对联邦 MRI 的广泛实验表明,当给定有限量的本地训练数据时,FedPR 在通信成本只有 <6% 的情况下显著优于现有的联邦学习算法。