Routing is, arguably, the most fundamental task in computer networking, and the most extensively studied one. A key challenge for routing in real-world environments is the need to contend with uncertainty about future traffic demands. We present a new approach to routing under demand uncertainty: tackling this challenge as stochastic optimization, and employing deep learning to learn complex patterns in traffic demands. We show that our method provably converges to the global optimum in well-studied theoretical models of multicommodity flow. We exemplify the practical usefulness of our approach by zooming in on the real-world challenge of traffic engineering (TE) on wide-area networks (WANs). Our extensive empirical evaluation on real-world traffic and network topologies establishes that our approach's TE quality almost matches that of an (infeasible) omniscient oracle, outperforming previously proposed approaches, and also substantially lowers runtimes.
翻译:可以说,在计算机网络中,最根本的任务也是最根本的任务,也是最广泛研究的任务。 在现实世界环境中,路线选择的一个关键挑战是需要应对未来交通需求的不确定性。我们提出了在需求不确定的情况下选择路线的新方法:将这一挑战作为随机优化来应对,并运用深厚的学习来学习交通需求的复杂模式。我们表明,我们的方法在经过充分研究的多通气流动理论模型中可以与全球最佳的方法相统一。我们通过放大对广域网络的交通工程(TE)现实世界挑战(TE)的审视,展示了我们的方法的实际效用。 我们对现实世界交通和网络结构的深入经验评估表明,我们的方法的TE质量几乎与(不可行的)无孔不入的无孔不入的洞中(无孔的)高孔径(无孔不入的)质量相匹配,比以前提出的方法高,也低得多的运行时间。</s>