There has been considerable recent interest in Bayesian modeling of high-dimensional networks via latent space approaches. When the number of nodes increases, estimation based on Markov Chain Monte Carlo can be extremely slow and show poor mixing, thereby motivating research on alternative algorithms that scale well in high-dimensional settings. In this article, we focus on the latent factor model, a widely used approach for latent space modeling of network data. We develop scalable algorithms to conduct approximate Bayesian inference via stochastic optimization. Leveraging sparse representations of network data, the proposed algorithms show massive computational and storage benefits, and allow to conduct inference in settings with thousands of nodes.
翻译:最近人们对通过潜伏空间方法对高维网络进行贝叶斯式建模的兴趣相当大。当节点数量增加时,基于Markov 链链蒙特卡洛的估计可能非常缓慢,并显示混合性差,从而激发对高维环境中规模极强的替代算法的研究。在本条中,我们侧重于潜在要素模型,这是广泛用于网络数据潜伏空间建模的一种方法。我们开发了可缩放的算法,通过随机优化进行近似贝叶斯式的推论。利用网络数据稀疏的表达方式,拟议的算法显示了大规模的计算和存储效益,并允许在有数千节点的环境中进行推断。