Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant random component or with particles living in a random environment which characterization may be deduced through experimental data and leading consequently to uncertainty-dependent equilibrium states. In this work, to address the problem of effectively solving stochastic Fokker-Planck systems, we will construct a new equilibrium preserving scheme through a micro-macro approach based on stochastic Galerkin methods. The resulting numerical method, contrarily to the direct application of a stochastic Galerkin projection in the parameter space of the unknowns of the underlying Fokker-Planck model, leads to highly accurate description of the uncertainty dependent large time behavior. Several numerical tests in the context of collective behavior for social and life sciences are presented to assess the validity of the present methodology against standard ones.
翻译:非线性Fokker-Planck等方程式在模拟大型互动粒子系统方面发挥着主要作用,在描述从流体和等离子体等古典领域到社会和生物动态等真实世界现象方面证明是有效的。它们的数学配方往往面临具有大量随机成分的物理力量,或生活在随机环境中的粒子,这些元素的特性可以通过实验数据推断出来,从而导致产生依赖不确定性的大规模平衡状态。在这项工作中,为了解决有效解决Stochatic Fokker-Planck系统的问题,我们将通过基于Stochatic Galerkin方法的微宏观方法建立一个新的平衡保护机制。所产生的数字方法与直接应用在Fokker-Planck模型的未知参数空间中的蒸气加勒金预测相反,导致对不确定性的高度精确描述取决于大量时间行为。在社会和生命科学的集体行为方面,提出了几项数字测试,以对照标准方法评估当前方法的有效性。