In this paper we develop inference for high dimensional linear models, with serially correlated errors. We examine Lasso under the assumption of strong mixing in the covariates and error process, allowing for fatter tails in their distribution. While the Lasso estimator performs poorly under such circumstances, we estimate via GLS Lasso the parameters of interest and extend the asymptotic properties of the Lasso under more general conditions. Our theoretical results indicate that the non-asymptotic bounds for stationary dependent processes are sharper, while the rate of Lasso under general conditions appears slower as $T,p\to \infty$. Further we employ the debiased Lasso to perform inference uniformly on the parameters of interest. Monte Carlo results support the proposed estimator, as it has significant efficiency gains over traditional methods.
翻译:在本文中,我们开发高维线性模型的推论,并得出一系列相关的错误。 我们根据假设在共变和误差过程中的强混合来检查拉索, 允许其分布中的脂肪尾巴。 虽然拉索估计器在这样的情况下表现不佳, 我们通过GLS Lasso估计了利害参数, 并在更一般性的条件下扩展拉索的无药性特性。 我们的理论结果表明, 固定依赖性工艺的非无药性界限更加清晰, 而一般条件下的拉索的速率似乎更慢, 如$T, p\\to\incty$。 我们进一步使用低比值的拉索对利息参数进行一致的推断。 蒙特卡洛的结果支持了拟议的测算器, 因为它在传统方法上取得了显著的效率收益 。