Federated learning promises to revolutionize machine learning by enabling collaborative model training without compromising data privacy. However, practical adaptability can be limited by critical factors, such as the participation dilemma. Participating entities are often unwilling to contribute to a learning system unless they receive some benefits, or they may pretend to participate and free-ride on others. This chapter identifies the fundamental challenges in designing incentive mechanisms for federated learning systems. It examines how foundational concepts from economics and game theory can be applied to federated learning, alongside technology-driven solutions such as blockchain and deep reinforcement learning. This work presents a comprehensive taxonomy that thoroughly covers both centralized and decentralized architectures based on the aforementioned theoretical concepts. Furthermore, the concepts described are presented from an application perspective, covering emerging industrial applications, including healthcare, smart infrastructure, vehicular networks, and blockchain-based decentralized systems. Through this exploration, this chapter demonstrates that well-designed incentive mechanisms are not merely optional features but essential components for the practical success of federated learning. This analysis reveals both the promising solutions that have emerged and the significant challenges that remain in building truly sustainable, fair, and robust federated learning ecosystems.
翻译:暂无翻译