Robot learning is at an inflection point, driven by rapid advancements in machine learning and the growing availability of large-scale robotics data. This shift from classical, model-based methods to data-driven, learning-based paradigms is unlocking unprecedented capabilities in autonomous systems. This tutorial navigates the landscape of modern robot learning, charting a course from the foundational principles of Reinforcement Learning and Behavioral Cloning to generalist, language-conditioned models capable of operating across diverse tasks and even robot embodiments. This work is intended as a guide for researchers and practitioners, and our goal is to equip the reader with the conceptual understanding and practical tools necessary to contribute to developments in robot learning, with ready-to-use examples implemented in $\texttt{lerobot}$.
翻译:机器人学习正处于一个转折点,这得益于机器学习的快速进步和大规模机器人数据的日益可用性。这种从经典的、基于模型的方法向数据驱动的、基于学习的范式的转变,正在为自主系统解锁前所未有的能力。本教程纵览现代机器人学习的全景,规划了一条从强化学习和行为克隆的基础原理,到能够跨不同任务乃至不同机器人实体进行操作的通才型、语言条件模型的路线。本工作旨在为研究人员和实践者提供指南,我们的目标是让读者掌握必要的概念理解和实用工具,以便为机器人学习的发展做出贡献,并提供在 $\texttt{lerobot}$ 中实现的即用示例。