The integration of artificial intelligence into development research methodologies presents unprecedented opportunities for addressing persistent challenges in participatory research, particularly in linguistically diverse regions like South Asia. Drawing from an empirical implementation in Sri Lanka's Sinhala-speaking communities, this paper presents an empirically grounded methodological framework designed to transform participatory development research, situated in the challenging multilingual context of Sri Lanka's flood-prone Nilwala River Basin. Moving beyond conventional translation and data collection tools, this framework deploys a multi-agent system architecture that redefines how data collection, analysis, and community engagement are conducted in linguistically and culturally diverse research settings. This structured agent-based approach enables participatory research that is both scalable and responsive, ensuring that community perspectives remain integral to research outcomes. Field experiences reveal the immense potential of LLM-based systems in addressing long-standing issues in development research across resource-limited regions, offering both quantitative efficiencies and qualitative improvements in inclusivity. At a broader methodological level, this research agenda advocates for AI-driven participatory research tools that maintain ethical considerations, cultural respect, and operational efficiency, highlighting strategic pathways for deploying AI systems that reinforce community agency and equitable knowledge generation, potentially informing broader research agendas across the Global South.
翻译:暂无翻译